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Abstract 

In this brief article, the design and implementation of Fractional Order Proportional-Integral-Derivative 

(FOPID) controller is presented in analog and digital domains. Here we show the measured results for energy/ 

fuel efficiency and enhanced robustness, as compared to classical PID controls. The FOPID controller is tested 

with DC-Motor, Magnetic Levitation System, and Brushless DC Motor, that we report in this article. 
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Introduction 

Classical controls are in form of PID (Proportional Integral 

Derivative) controllers exist since 1910. The PID was invented in 1910 

domain of operation in the entire first quadrant of α - β plane (Figure 

1a). This flexibility makes fractional order control more versatile tool 

in designing robust and precise control systems. The fractional Laplace 

operators in the transfer function (i.e. s-α and sβ ) of FOPID corresponds 

to fractional integration of order α and fractional differentiation of 

order β, respectively [1,2]. Thus, in the time domain the controller 

output i.e. u(t) which is obtained via operation on real time error 
signal  i.e.  e(t)  is   u t   K   e t   K  D 

e t   K  D
 
e t  .  This 

by Elmer Sperrys for ship auto pilot. However the „electronic‟ circuit 

based conventional classical controllers such as PD, PI and PID have 

been applied in industry for over half-a-century to control linear 

and nonlinear systems. The tuning methods for PID controllers i.e. 

“Ziglers-Nichols” is well proven and exists since 1942. 

Recently, such control schemes have been extended to their 

generalized form using fractional calculus (differentiation and 

integration of an arbitrary order). The FOPID controller has fractional 

order differ-integration operations [1-4]. In applications, where these 

non-integer order controllers (i.e. FOPID) are used there is added 

flexibility in adjusting the gain and phase characteristics as compared 

to integer order controllers as shown in Figure 1 [1,2]. The Figure 1a 

gives the transfer function (in frequency domain) of FOPID controller 

p i t d t 

has operation of fractional integration and fractional differentiation 

(Figure 1b). The operation D u x(t) is fractional derivative/integration 

with respect to variable t for a function x(t) , for fractional order u; 

uR [1-4]. When u=1, the operation is one-whole classical derivative, 

and with u= -1 the operation is classical one-whole order integration. 

This structure of FOPID controller is depicted in the Figure 1b. A 

better understanding of the potential of fractional calculus and the 

increasing number of studies related to the fractional order controllers 

led to the importance of studying aspects such as the analysis, design, 

implementation, tuning, and application of these controllers in diverse 

applications. Some of the results we briefly report in this article. For 

detailed study the readers may study the articles listed in references. 
as C s  K  K s  K s , with parameters α and β and the non- 

 
FOPID p i d 

integer values (greater than zero). These parameters α,β  R+, give two 

extra degrees of freedom in tuning as compared to three in number for 

the classical PID whose transfer function is C
PID

(s)= K
p
+k

i
s-1+K

d
s [1,2]. 

Note that classical PD, PI, and PID take only three points namely (0,1), 

Algorithm for Practical Realization of the Fractional 

Order Differentiators and Integrators for Analog and 

Digital Circuits 

Fractional order differentiators and integrators are not available 

(1,0) and (1,1) in the entire α - β plane, whereas the FOPID is having commercially. The fractional order Laplace element i.e. S   when 

         implemented into analog or digital circuits is called „fractance‟ [5]. 

Implementation of these „fractance‟ is by using a band-limited (ω1≤ ω ≤ 

ω
h
) integer order transfer function approximation. Thus, the fractional 

Laplace operator i.e. sα;   R gets approximated by ratio of rational 

polynomials as s 
 s  z1 s  z2 ...s  zN 

s   p1      s    p2   ... s    pN 

in the band ω1 ≤ ω 

 
 

 

 

 

 

 
 

 
 

 

 
 

 
Figure 1: The concept of FOPID and structure of FOPID controller. 
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Figure 3: Analog realization of band limited fractional differ-integral operator. 

 
 

 

 
≤ ω

h 
[1,2]. This rational approximation is then implemented by using 

analog circuit technique [6,7] and then using digital techniques [7-13]. 

A novel pole-zero interlaced approximation method (a new 
proprietary algorithm) is developed to approximate the fractional order 
Laplace operators [5,6]. The basic idea is of getting a constant phase 
is by slope cancellation of asymptotic phase plots for zeros and poles 
[1,2,5,6]. For fractional order integrator, first pole p1 is selected such 
that its asymptotic phase plot passes through point (ω

1
,ɸ

req
), then z

1 
i.e. 

the first zero gets selected; and thereafter subsequent poles and zeros 
are selected so as to keep the asymptotic plot constant at ɸ

req
= α(90°). 

For semi-integration operation α = -0.5 so we get ɸ
req 

= -45°. Thus our 

objective is to have phase angle equal to ɸ
req 

with an error less than or 

equal to e
allowed 

, i.e. e
rms 

≤ e
allowed 

(Figure 2) for all frequencies ω such 

that ω1≤ ω ≤ ω
h
. For a n number pole zero-pair we have the essential 

formulas noted in the Figure 2, (tagged as Eqn). We note here the values 
of band limits i.e. ω

1, 
ω

h 
is based on system-identification, that is carried 

out a priori with the known dynamic model of the system [7,11-13]. 

In the described recurring relation tagged as Eqn in Figure 2 we 

have a trim-parameter µ which is normally zero but is selected as to 

adjust density of p
i 
, z

i 
in the phase plot to have ɸ

avg 
as close to ɸ

req
. The 

details of its usage with several examples are in [5,6] and the range of 

µ is 0 ≤ µ < 2. The approximation with six-pole zero pair with ω =102 

radian/sec , ω
h 
=104 radian/sec with error ± 1° for α = -0.5 gives values 

of p
i 
and z

i 
(I = 1-6) is listed in Table 1, with plot depicted in Figure 3c. 

The rational approximation of semi-integration operation is thus 

following (from Table 1) 

s
0.5  

 
s  7.0795s  51.286s  371.54s  2691.5s 19, 498s 141, 250

s  2.6128s 18.928s 137.12s  993.34 s  7191.6s  52,131

 

 

 
i 1 2 3 4 5 6 

z
i
 -7.0795 -51.286 -371.54 -2691.5 -19,498 -141,250 

p
i
 -2.6128 -18.928 -137.12 -993.34 -7191.6 -52,131 

Table 1: The pole and zero of the rational approximation of semi-integration on 

band limited range of 100-10,000 radian/sec. 

 
The algorithm gives the rational approximation in form of band 

limited transfer function for the fractional Laplace variable s±α as 

indicated above. The digitization is done from s to z domain by using 
Tustin formula (Figure 2), i.e. s 

 2  z 1  
. With T = 0.0001sec [7] 

For a fractional order differentiator in the band limit of ω1≤ ω ≤ ω
h

 T 
 

z 1 
 s

 

we do first selection of first zero z1 and then first pole p1; and rest is same 

recurring method that is described for fractional integrator. Therefore 

for semi-differentiator i.e. s0.5 the approximation will be reciprocal of 

what we obtained for semi-integration i.e. s-0.5 as above. 

we obtain digitized representation of semi-integration (Table 1) as 

following transfer function. 

S 
0.5 

|  0.008941
   z  0.752 z  0.763 z  0.964 z  0.999 z  0.013  

 

 z  0.446 z  0.471 z  0.905 z  0.986 z  0.998 z 1

The discrete transfer function is implemented by using standard 

digital-filter algorithm [7,11-13]. With the obtained approximated 

fractional Laplace operator for sα, sβ the FOPID transfer function i.e. 
C s  K  K s


  K s


 is dicretized to z domain (Figure 1). 

FOPID p i d 

Thereafter choosing the standard digital-filter formula a difference 
equation for discretized C

FOPID 
(s) is obtained. This difference equation 

relates discretized e(t) stated as e
k 

to get discretized controller output 
u(t) stated as u  which is given as u    

m   
a u       

n     
b e [7,11-13]. 

k k 

Analog FOPID Controller 

i 1    i    k i    j 1 j   k  j 

The fractional order impedance or „fractance‟ circuit is realized 

with two port network having passive components resistor (R) and 

capacitor (C) [5,6], along with operational amplifiers (Figure 3a).This 

analog circuit of Figure 3a is designed to generate the pole-zero pairs by 

use of available R - C components designed for a given fractional order 

(α; α R). The asymptotic phase plot of fractional order integrator is 

shown in Figure 3c for α= -0.5; for frequency band of 102 ≤ ω ≤ 104. The 

Figure 3b shows a photograph of developed „fractance‟ circuit with six 

poles-zero pair i.e. having six circuits i=1-6 of Figure 3a connected in 

series with different values of R
i 
, R

f 
, C

i 
; R

f
‟. Refer Table 2 for the values 

of the six circuits [6]. 

A semi-integrator for the required specifications of band-limited 

z domain 

 
 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 
Figure 2: Algorithm of pole-zero approximation method for realizing fractional 

Laplace operator as ratio of rational polynomials. 
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Circuit 

Section i 
1 2 3 4 5 6 

C
i
 1µF 1µF 0.47 µF 0.068 µF 10nF 2.2nF 

R
i
’ R

f
’ 382.7kΩ 52.8kΩ 15.52kΩ 14.8kΩ 13.8kΩ 8.71kΩ 

R
i 
R

f 223.9kΩ 30.9kΩ 9.08kΩ 8.66kΩ 8.13kΩ 5.1kΩ 

Table 2: R-C values of six circuits for realizing the half order integrator. 

 

 

approximation is realized by six poles-zero pairs as per algorithm of 

Figure 2, presented in Table 1. The resistors and capacitor values of the 

circuit of Figure 2a given in Table 2 is by formula [6]. 

for fractional Integrator Ri 
1   

, R
'
 

pC  
1 

 z  p C 
i  i i i i 

for fractional differentiator R  
  1   

, R
' 


 1 
 

i
   zC 

i
   p  z C 

i  i i i i 

In the formula we select first the available value of capacitor and 

then the resistor value is calculated. The exact resistor value is adjusted 

by using standard E48 series resistors with a potentiometer in series. 

The algorithm, as shown in Figure 2, is developed to determine 

the actual values of resistor and capacitor components. Then these 

„fractance‟ circuits are organized (with operational amplifiers) as 

shown in Figure 1b, to get analog FOPID controller. The analog FOPID 

controller is shown in Figure 4a, it has got facility to select fractional 

order of differentiation β, and fractional order integrator α as 0.2 , 0.5 

and 0.8; and also via potentiometer one can select the gain values of the 

„gains‟ K
p 

, K
i 
and K

d 
. 

To verify the analog FOPID controller performance, a hardwired 

emulator circuit of DC motor (i.e. plant) is developed. Plant consists 

of a DC motor and a load with specification as: Speed N=2000 rpm 

, the armature resistance as R
a
= 2Ω , armature inductance as L

a
 

=3mH , rotor inertia J= 1.78× 10-4 Kg- m2 , motor constant K
v
=1.02, 

DC armature voltage V
a  

=24V [6].The plant transfer function G 

(s) of DC motor a second order stable function realized by circuit is 

   
 

Figure 5: Hardware results of PID with DC motor emulator at different 

parametric gain variation. 

 K    R K 2 
1

 

G s   s  V s   
  v  

 S 2  a S   v  . The complete hardware 

 La J  La JLa 

setup is shown in Figure 4a. Performance test result of DC motor model 

emulator circuit is shown in Figure 4b.The performance of the realized 

analog FOPID controller is tested with the DC motor emulator. The 

FOPID performance indicates that the controller with α,β= 0.5 could 

make it possible to maintain the desired control on the output speed. 

The response of DC motor model with FOPID controller is shown in 

Figure 4c. 

Enhanced Robustness-‘iso-damping’ Observed 

The variation in gain from 40 to 100 is set with PID and FOPID 

controller. The recorded response is given in the CRO traces of 

Figures 5 and 6. From CRO traces of Figures 5a, 5b it is observed that 

the peak overshoot with a PID controller is varying widely, when the 

gain is changed from 40 to 100. Whereas, from CRO traces of Figures 

6a, 6b the peak overshoot is almost constant in FOPID controlled 

system, while the gain is changed from 40 to 100. This phenomena of 

overshoot remaining constant over wide parametric spread is called 

„iso-damping‟, is a feature what we get via using FOPID; thus we have 

enhanced robustness in controls [1,2,6]. The comparison of overshoot 

variation is also tabulated in Table 3 [6]. 

The Table 3 show that with variation in gain from 40-100 the closed 

loop response is having overshoot constant at about 25%. This is „iso- 

damping‟, that is got by FOPID while the overshoot varies from 22- 

65% in case of PID. This is enhancement in robustness experimentally 

demonstrated by use of FOPID. 

 
 

Values of Kp 

(gain) 

Close-loop PID Close-loop FO-PID 

% Peak 
overshoot 
simulation 

results 

% Peak 
overshoot 
hardware 

results 

% Peak 
overshoot 
simulation 

results 

% Peak 
overshoot 
hardware 

results 

40 22 30 25 24 

50 30 36 25 24 

60 45 44 25 24 

70 53 52 25.5 25 

100 65 60 25.5 25 

Table 3: Comparison of peak overshoots with variation of gain for PID and FOPID. 
 

Digital FOPID Controller 

Magnetic levitation system controlled by PID and FOPID 

controller 

This designed digital FOPID controller is used to control highly 

non-linear and inherently unstable Magnetic Levitation System (Mag- 

Lev) in hardware-in-loop mode as shown in Figure 7a. Mag-Lev is 

basically an electromagnetic system which levitates ferromagnetic 

objects in space by the magnetic force induced due to the electric 

current flowing through the coils around a solenoid [7]. The tuned 

controllers that are compared are having transfer functions, for PD as 

C
PD

(s) = 4 +2s , PID as C
PID 

(s) = 5.5 +0.2s-1 + 2s and FOPID as C
FOPID 

(s)= 

 

 
 

 

 
 

 

 
 

 

 
 

 

 
 

 
Figure 4: Analog FOPID controlling Speed of DC motor emulator. 

 

 
 

 

 
 

 

 

Figure 6: Hardware results of FO-PID with DC motor emulator at different 

parametric gain variation. 
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Figure 7: Controlling Mag-Lev system by PD, PID and FOPID. 

 
 

 

7+12s-0.8+s0.4. The continuous time pole-zero interlaced approximation 
method (Figure 2) to get rational approximation for s±α is discretized, 
using Tustin digital formula (with T

s 
=0.01 Sec) converting s- domain 

to z- domain, with sampling time T
s
= 0.01 sec; in the band102 ≤ ω ≤ 104 

and then a digital FOPID controller is developed [7]. 

The performance analysis for digital classical PID, PD, and FOPID 

is carried out. The results in CRO traces of Figures 7b, 7c, 7d that show 

a better control over position accuracy with lesser control efforts u(t) is 

achieved with FOPID over the conventional methods i.e. PID, PD [7]. 

In practical terms, this improvement of controlling with lesser effort 

translates to better energy/fuel efficiency [1,2,7-9]. 

The control signals u(t) along with measures as Performance Indices 

(P.I) those are Integral Absolute (IA), Integral Time Absolute (ITA), 

and Integral Square (IS) [10] are the indicator of energy utilized by 

the controller, an important factor in the industrial control paradigm. 

In this context, the fractional order controller proves to be superior to 

the classical controller. The comparison is presented between PD, PID,                                                                                                                        

and FOPID controls in Figure 8, as for ball position error (Figure 8a) 

and controller performances (Figure 8b) via comparing performance 

indices IA, ITA, and IS, calculated on 

(i) Error signal e(t) and 

(ii) Control signal u(t) i.e. output of the controller. 

DC motor speed control by PID and FOPID controller 

The digital FOPID controller is tested for 1.5kW industrial DC 

motor drive [11,12]. Speed control scheme of buck converter fed DC 

motor drive is shown in Figure 9a. Here, a reference speed is given 

as set point for FOPID controller, which provides the control signal 

computing the error generated in the control scheme. The PWM pulses 

are generated at frequency of 25 KHz with corresponding duty-ratio 

proportional to the controller output [11,12]. This signal operates the 

switch of buck converter and regulates the armature voltage of the 

DC motor. The controller is implemented on Digital Signal Processor 

(DSP) TMS320F28027 and TMS320F28377s. An industrial DC motor 

drive is developed as shown in the Figure 9b. 

 

 

 

 

 

 

 
 

a. Block Diagram of Circuit & System DC Motor Speed Controls 
 

 
b. Actual implemented circuit for speedcontrol of DC motor 

Figure 9: DC motor speed control by FOPID. 

 
 

Here, it is recorded that tuned PID used for this DC motor is C
PID

 

(s) =115.6 +0.22 s-1+1.6s and tuned FOPID used is C
FOPID 

(s) =15.2 + 
0.04 s-1.4 + 2.4s1.2 . This tuning resulted in minimizing the Performance 

Indices (P.I) as shown in the Table 4, with respect to error signal e(t). The 

Table 5 gives the values of performance indices of controller effort with 

respect to control signal of the controller i.e. u (t). The measurement 

is done for armature current and armature voltage for various speed 

settings for DC motor, in no-load condition and with loaded condition 

(coupled to a generator and then loading the generator via resistive 

load banks). The Figure 10 displays the experimental result. 

It is observed that averagely 21.3% less power is drawn from DC 

source at no-load condition and averagely 19.6% less power is drawn 

at loaded condition for speed settings from 500RPM to 1300RPM. This 

is direct evidence of having Energy/Fuel Efficiency by using FOPID. 

BLDC motor speed control by PID and FOPID controller 

The speed control scheme for FOPID controller fed brushless DC 

motor (BLDC) 0.5kW, 350 RPM [13] drive is shown in Figure 11a. 

Here, the scheme is having FPGA-in-the-loop. The digital FOPID 

controller is implemented on Altera FPGA DE2-115 board [13]. Figures 

11b-11d gives the comparison between the tuned PID controller and 

tuned FOPID controller. The Figure 12 show the comparison of control 

 

 
a. Error in ball position in controlled Mag-Lev system with PD, PID and FOPID 

 

 

 

 

 

 

 

 

 

 

 
b. Controller effort PD, PID, FOPID 

Figure 8: Comparison of controls PD, PID, and FOPID in Mag-Lev system. 
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a. Block Diagram of BLDC Motor Speed Control 

 
b. Tuned controller parameters PID & FOPID 

 

 

 

 

 

 

 

 
c. Transient performance comparison PID & FOPID 

 
d. Performance Indices Comparison PID & FOPID 

 

Figure 11: BLDC Motor control by PID/FOPID. 

 

 
a. Trace of control signals for PID & FOPID for step change in speed demand of BLDC motor 

 
b. Comparison of RMS Currents for the three phases of BLDC motor controlled with PID & FOPID 

 

 

 

 

 

 

 

 

 
c. Trace of one of the phase currents of BLDC motor control with PID 

 

 

 

 

 

 

 

 

 
d. Trace of one of the phase currents of BLDC motor control with FOPID 

Figure 12: Performance comparison of BLDC motor speed control with PID 

and FOPID. 

 
 

 

 
signal and phase current of BLDC motor controlled by PID & FOPID. 

We observe significant reduction in the RMS phase current drawn 

while controlling via FOPID controller as compared with classical PID 

controller. 

The tuned FOPID transfer function is C
FOPID

(s) = 4.25+ 0.2s- 

1.21+ 0.009s0.6 [13]. The fractional Laplace variables s-1.21 and s0.6 we 

 

 
 

approximate as per algorithm described in the form s 

n 

i 1 

n 

i 1 

s  zi 

s  pi 
in the frequency band10-1 ≤ ω ≤ 103 with phase angle error e

allowed
= 1° 

(Figure-2) Then the obtained expression for C
FOPID

(s) we discretize by 

Tustin method [13] with T
s
=0.001sec to get FOPID in z - domain as 

following 

 
 

U  z 

116.4z
17

  773.7z
16

 1797z
15

  802.6z
14

  3730z
13

  6455z
12

 1002z
11

 

6953z
10

  6347z
9
  914z

8
  4282z

7
 1860z

6
  606.9z

5
 

730.9z
4
 162.1z

3
  29.75z

2
 15.32z 1.24 

CFOPID  z    
17 16 15 14 13 12 11 

 

E  z  z    5.487z    8.358z    7.387z    33.62z    20.23z    35.87z   

51.52z
10

  2.157z
9
  40.67z

8
 18.39z

9
 11.29z

6
 10.83z

5
 

0.4359z
4
 1.979z

3
  0.481z

2
  0.09213z  0.03333 

Fractional Calculus Engineering Laboratory 

All these experiments are kept in Fractional Calculus Engineering 

Laboratory a first of its kind [14]. This laboratory provides a platform to 

develop Fractional Order Control Systems for industry and academic 

institutes. This laboratory is in use since November, 2016; at Dept. of 

EE, VNIT-Nagpur. 

Conclusions 

These practical demonstrations of implementation of fractional 

calculus in control science, gives a first of its kind a laboratory called 

„Fractional Calculus Engineering Laboratory‟; where our aim is to have 

more fractional calculus based controllers and advanced methods 

developed for industrial usage. Though there is no commercial 

manufacturer or R&D institute using fractional calculus in controls, 

 
S.No. Controller ITAE IAE ISE 

1 PID 34.21 46.75 7454 

2 FOPID 14.94 20.85 6086 

Table 4: Minimized performance index for error signal for PID & FOPID controller. 

 

S.No. Controller ITACE IACE ISCE 

1 PID 46.56 51.35 10080 

2 FOPID 20.85 50.63 6663 

Table 5: Minimized performance index for control effort for PID & FOPID controller. 

 
 

 
 

 

yet in future we hope this platform will be used for such developments 

for especially energy efficient and enhanced robust systems. Presently 

our aim is to make few more systems on power electronics of electro- 

mechanical drive and energy conversion systems using fractional 

No-load Condition Loaded Condition 

Figure 10: Measured power input to DC motor for control with tuned PID and 

tuned FOPID, shows averagely 21%less power is drawn when controller is 

FOPID 




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calculus; and take this laboratory to industry houses and academic 

institutes & universities. However, it is satisfying to see the long 

standing conjecture/hypothesis of fuel/energy efficient controls is 

realized via using fractional calculus. Still we have miles to go. 
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